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equations of motion, and the emittance growth due to the nonlinear terms is estimated.

1. Iniroduction

A clear understanding of the motion of an electron
as it passes through the magnetic field of a wiggler of a
free electron laser with flat or curved magnetic pole
pieces has already proven to be useful in designing
magnets which can focus the electron beam and mini-
mize degradation of the beam emittance, preventing a
possible degradation of the performance of the FEL [1].
We reexamine this issue, including in the expression for
the magnetic field, terms which are higher order in the
displacement of the particle from the axis of the wiggler
and which have thus far been neglected. The moiivation
for undertaking this analysis is to examine whether or
not these terms, aithough small, can have a secular
effect on such parameters as beam position or emittance
over the length of the wiggler. In light of the desire to
use very long wigglers in current designs for high-power
FELs, it is useful to understand such secular effects. .

estimate is made of the parallel-velocity perturbation
from the nonlinear focusing terms. In ref. [5] an analysis
of the electron orbits, including nonlinear terms, was
obtained for the case of a wiggler which had a magnetic
field which did not vary in the x-direction, correspond-
ing to wide, flat magnetic pole pieces. In ref. [6] the
onset ol chaotic orbits is studied in helical wigglers,
with space-charge and an axial guide field included.

In ref. [1] the magnetic field B to zeroth order varies
sinusoidally with z and is oriented in the y-direction.
This zeroth-order field produces the familiar wiggle
motion of an electron parallel to the x-z plane.
Maxwells equations require the existence of x- and
z-components of the magnetic field, although they can
be made to vanish along the axis of the wiggler. The
field will have a finite field gradient, however, and the
interaction of the fields with the parallel and wiggle

motion of a finite-sized beam (in particular fiite y} -

will produce a restoring force in the y-direction, lingar
in y, yielding harmonic motion (see e.g. ref-/F1]). This is
known as betatron motion and occurs -on a longer
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ulso slihtly shifted and is of magnitude 2mw/A,. Note
that the shift depends on the off-axis displacement.

The outline of this paper is as follows. In section 2,
we oblain an expression for the magnetic field of the
wiggler which is a Taylor expansion in powers of x and
y. In section 3 we write down the Lorentz-force equa-
tion expressed as a function of z rather than ¢ In
section 4 we perform a two-length-scale analysis which
yields an expression for rapid wiggle motion and two
second-order coupled differential equations for the
slowly varying *‘guiding-center’” equations. In section 5,
a paraxial approximation is used to obtain a set of four
first-order differential equations that eliminate the be-
tatron motion from the guiding-center equations. These
equations express the position of the particle in terms of
the amplitude and phase of the betatron x and y
motion. In section 6 we obtain an analytic solution to
the amplitude equations for a particular choice of the
magnetic-field constants. In section 7 we make an
estimate of the emittance growth due to the presence of
the nonlinear terms.

2. Specification of the magnetic field

We make the following five assumptions about the
wipgler magnetic field B = mch/e:
(1) the field is well approximated by a vacuum fHeld:
VXb=V-b=0,
so that

b=-vx and vx=0, {1)

where x is the magnetic potential;

(2) Along the wiggler axis {x =y = 0) the field is that of
a perfect wiggler {with no harmonics of the wiggler
wave number k,, present):

-g%(;(x=0, y=0)= —bycos k,z, @
2
] a
a—i(x=0, y=0)= a—if(x=0, y=0)=0;
(3) reflection symmetry about x=0;
x(—x, y)=x(x, y); (3
(4) reflection antisymmetry about y = 0:
x(x —y)=—x{(x, »)s (4)
(5) x may be expanded as a Taylor series about x =y
=0
o of
X= 2 2, M,x"y"cos kz. (5)
n=0 m=0
Assumptions (2) and (5) immediately lead to:
My = —by; My=0; My=0. (6)

Use of assumptions (1)} and (5) leads to the recursion
relation:

(Hl + 1)("] + 2)"me-i—i..u + (H + 1)(" + E)Mn.r:-!-z

- k\;:an.n =0 (7)
The symmetry conditions (3) and (4) require that
M, =01l m is odd or n is even, (8)

We may thus write down the first six terms of the
Taylor series:

"% o5 z| v axty 4 (£ - L) vis exty
k., 63

+(-§ —2c)X2Y3+ %(% —§d+ 4c)Y5]. (8)
Here X=fk x, Y=k,y and Z=k,z, while ¢ and 4
are arbitrary constants. If X and Y are considered
first-order quantities, eq. (9) is correct through order 5.
Even orders in the potential are not present. The recur-
sion relation [eq. (7)] dictates that for each additional
higher odd order one new arbitrary constant is intro-
duced.
The potential used in ref. [1],

By

X=-1 cosh k. x sinh &,y cos k,z, i+ k;',=k:',,,

(10)
is a special case of eq. (9). If we choose d = (k,/k,)*/2
and c=(k,./k,)}'/24, then eq. (9) is the fifth-order
expansion of eq. {10). For equal harmonic focusing in
the x- and y-directions, k, =k, =k,/¥2 so that d=
1/4 and ¢ =1/96. Eq. (9), however, allows an arbitrary
¢ even for equal harmonic focusing in the two direc-
tions. For fields which are independent of x, d=c =0,

3

3. The equations of motion

We assume that the transverse motion of an electron
as it passes through the wiggler is dominated by the
interaction with the wiggler magnetic field only. The
interaction with the fields of the other electrons and
with the growing electromagnetic wave, although crucial
in changing the parallel velocity and total energy, is
ignored in this calculation of the transverse posilion and
velocity, Under this approximation the transverse force
on the particle is simply proportional to the transverse
component of vX b, where o is the particie velocity.
When the independent variable is Z rather than z {time)
the equations of motion become

3
0

W
XH -
i

[h,—Y'h.—X'(Y'h,—X'R)],

i W- L ’ I ¥ N
Y= =2 X —h =Y (Y ho— X'hy)], (11)
u'= Wi (Y'h,— X'h,).

111. THEORY
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Here an apostrophe indicates a derivative with respect
to Z, u=Z/Z,, where the dot indicates a derivative
with respect to time ¢, Wi =by/(vBoku) =V2 a0 /7,
cfly = Zy/k,, is the parallel velocity at Z=0, and A=
b/ by

4. Guiding-center equations

'To obtain better physical insight and more numeri-
cal utility, we wish to extract the wiggle motion analyti-
cally from eq, (11). As in ref. [1], we divide the problem
into short (or “rapid™) and long (“slow™) length scales.
Let X=2X;+ X, and ¥Y=Y¥;+ ¥}, where X;, T vary
on scales of order 2w and X, ¥, vary on scales greater
than or of order of 2@/ (d'/* W), We shail assume that
X, and Y, are first-order quantities and that W3 is a
second-order quantity satisfying

13 X, Yy, Wy X3, Y5, Wi (12)

We also represent the field /& as a sum of short- and
long-length scale quantities as a result of its dependence
on X and Y. We treat preducts of short-length-scale
guantities that have an odd number of factors as being
a short-length-scale quantity, whereas an even number
of factors results {when averaged over a wiggler wave-
length} in a long-length-scale, slowly varying quantity.

We {ind that through fourth order, integration of the
fast component of eq. (11) yields

Xp=—(1+dX5+ (X —d) Y)W cos Z,

’ (13)
Y, = 2dX,YoWy cos Z,

Above, the slow quantities were treated as constant
during the integration, and higher harmonics in Z were
ignored. The quantity u; equals zero through fourth
order.

When these solutions for X and ¥ are substituted
into eq. (11), and when averages over the short length
scale are taken, the result is two coupled second-order
differential equations for X, and ¥; (through sevenlh
order):

Xy = —AW3X, (1 + CX} + DYF),

14

Yy = —BWY, (1 + EXG + FYF). (14)
Here
A=d,
B=1-d;
C=(d -i-"c)/A

2 {15)
D=(d+d?*—6c)/4;
E=(d+d*—6c)/8;

F=(2c+d*—4d/3+1}/B.

Multiplying the top of eq. (14) by BEX{ and the
bottom of eq. (14) by ADYy and adding the results
yields the “energy” equation

d :
T [BEXD + ADY,? + ABW;}

CE DF

>-:(E)(§+DYD1 X + Y“+DEXD)1] )]

=0. (16)

In FELS with smaller values of y it can be a better
approximation to make W7 a first-order quantity in
which the following ordering is valid:

13> Xy, Yy, W > X3, ¥2, W (17)

Using the ordering in eq. (17) we {ind that ¥, is
unaltered but that X, has an additional term:

K= =14 dX3 4 (- )3 + (4 +34/4) ]
X Wl cos Z. (18)

We find that eqgs. (14) and (15) are then modified only
in the sense that A and B must be redefined:

amas (3 20 F ),
3 d 3d* 3 (19)
w292
B= d+(16+§ 7 2) o -

(Eqs. (14) had been independently derived previously in
ref. [4] for the case of the potential of ref. [1] and the
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Fig. 1. The X-guiding-center position of a particle when
anharmonic terms are included in the equations of motion,
(The parameters are listed in table 1). The particle's betatron
amplitude is no longer constant; rather, the X and Y ampli-
tudes are exchanged in a precession length scale = /K,
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Fig. 2. The Y guiding center. As the X-amplitude decrenses, the
Y-amplitude increases.

limit when Wj is a second-order quantity. For the case
c=d=0 (flat pole pieces, with the fields independent
of x) egs. (14) reduce to eq. (4.11) of ref. [5] when terms
to the same order are compared).

In figs. 1 and 2 we numerically integrate egs. (14),
vielding the guiding-center positions X, and ¥; as
functions of Z. The parameters were chosen so as to
illustrate the precession of the betatron orbits. The
amplitudes are interchanged over a distance (for the
case shown) of about 14 betatron wavelengths.

1t is interesting to raise the question [3] as to whether
or nat the coupling between X, and ¥, can be mini-
mized by a judicious choice of constants d and c. In
fact, if ¢ = (d + d*)/6, the coupling constants D and E
both vanish. The amplitudes then behave as indepen-
dent harmonic oscillators with small cubic nonlineari-
lies. A carefully constructed magnetic pole face (where
the height and curvature varied as [unctions of X)
could produce the required ¢ and 4. The cubic nonlin-
garity produces an amplitude-dependent betatron

" frequency, however, which produces emittance growth

quite similarly to the case for which the amplitudes are
coupled, Our subsequent analysis assumes a more
generic D and E which do not, in general, vanish.

5. Equations for the betatron amplitude and phase

The differential equations in eq. (14) are in the form
of harmonic oscillators with weak, nonlinear coupling
coefficients. Since at any point in Z the basic motion is
harmonic, it is natural to try a substitution in which the

betatron motion is explicitly eliminated, solving instead
for the betatron ampiitude and phase. Let

X, = X, cos(AVPWEZ + &, ),

20
Y=Y, cos(B]’Qszz + tj{,,). 20)

Substituting eq. (20) into eq. (14) we obtain for the
upper equation terms proportional to cos(A4'2HWFZ +
&} and sin(A'?W{Z + ¢,) with analogous terms for
the lower equation. We make a WKB-like approxima-
tion in that we eliminate terms proportional to X', ¢,
Yy’ and ¢}, Further we drop terms proportional to the
cosine or sine of twice the betatron frequency, as they
average 10 zero over a betatron wavelength. The result is
a set of four first-order coupled equations for the be-
tatron amplitude and phase:

A DWg
g = = —g——Xp¥j sin 249,

B'2EW
Yy = —g— YpXj sin 249,

A2t (21)
¢, = g [3CX} + (2 + cos 280) DY{ ],

B2 ) .
4 =—F [(2+ cos 28¢) EX] + IFYE],

where Ag = (4" — BY2YWGZ + ¢, — 6.

6. Analytic solution for a special case i

For the magnetic potential treated in ref. [1], for the
case of equal harmonic focusing in the X- and Y-direc-
tions, and when W7 is regarded as a second-order
quantity, the constants ¢, ¢ and A-F take on particu-
larly simple values:

11

d=3! L= 3§,

A=B=1,

D=E=1,

C=F=1.

Eqgs. (21) then take on the simpler form

d

U= —ulV sin 2A¢,

d .

reide UV sin 2Ad,

d ® 2 27
I; do= — 5 {(1+cos 2AY(V ~ U}, (22)

Here U= X3, V= Y§ and p = W'/ 8. For this case it is
seen that the sum of the squares of the betatron ampli-
tudes is constant, i.e.,

U+ V=constant = C,. , (23)
This corresponds lo a constant energy as given by eg.
(16). By expressing eq. (22) in terms of L'+ V" and

1II. THEORY
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Table 1
Wiggler parameters
ELF *& IMP ¥ PALADIN # EXAMPLE ™
r [cm] 0.6 0.4 0.5 i 0.5
v 6.9 20 100 30
Wi =yZa,/v 0.52 0,20 0.017 0.15
L [cm] S . 400 50 2500 2400
ko [cm"]] 0.64 0.63 0.78 0.78
ky [cm™) 0.15 _ 0.062 0.0065 0.059
ky fem™] 51x10-7 9.5%10~% 25%x107* 34%107°
No=koL/2w 40 53 302 300
Ny=kpL/2w 9.5 54 2.6 22
N, =koL/2w 0.32 0.083 0.10 0.91

™ ELF (Electron Laser Facility), PALADIN and IMP (Intense Micrownve Prototype) are past, present and future FEL experiments

at the Luwrence Livermare National Laboratory.

" Note that ELF used quadrupole focusing (not curved pole pieces), and that EXAMPLE indicates the parameters used in figs. 1-5

that were chosen to illustrate the effects of the nonlinear terms.

U/— V¥ it is easy to obtain a second constani of the
motion:

UV (1 + cos 2Ag) = constant = ;. (24)

After one additional integration and considerable alge-
bra we obtain the following exact solution to eq. (22):

. G o 12
Xi= wz—{1+ [%(1~»sm(2}.p2+6‘0))] },
. 12
Y,;=T{1¢[%( —sin(2K,Z + )| }
1 - 2—3a—fxsin(2KpZ+BU) ,
Ag = cos ( 1-a+asin(ZK,Z+8) | (25)
Here,

2

2 WD
a=1-"23., K=2G 3

g =Ap{(z=0),

. 4C; (1 —cos 2Ad,)
acl?' (1 + cos 2A¢D) .

(26)

In eq. (25) the solution alternates between use of the
upper sign and the lower sign, with the transition be-
tween signs occurring when X;= Y. The solution is
thus periodic in Z with period 2w/K . Note that care
must be taken to choose the correct branch of the cos™
in eq. (25) and of the sin™! in eq. (26). We may use eqs.
{21) and (25) to solve for the sum of the betatron phases
D2, + gy :

Wy -
b4= —g-C1Z+dyo+1an"[g(8)] ~ tan™"[5(f)]

f—m\.
+11'Int(1+ 5 ) 1)

_ (2—a) tan(8/2) +
2(1—a)?
8=2K,Z+ 8,

g(6y) =g[8(==0)].

The final term in eq. (27) ensures continuity in ¢, when
the principal value of the tan™! is taken. From eq. (27)
the x- and y- betatron phases are obtained individually
via ¢, = (¢~ Ad)/2 and ¢, = (b, + Ad)/2.

The analytic solution is of interest because it pro-
vides the scaling for the betatron “precession” rate K
and the change in the betatron wave number, AK,i
That is, eqs (25) and (26) imply

1

K,= Xp¥p(1+ cos 2486 ) P,

P 4‘/_'

Kﬂ=

where

I[I

-3 (%)

5 ay Wy
= { X} + Y + Xp¥p[2(1 + cos 24)]'7) ¢

W-
(28)

Here { ) indicales average over a betatron wavelength.

Eq. (28) indicates that the length scale over which
the x and y amplitudes of the betatron motion return
to their values at z=0 is L,=2wk,/K,~=7A,/
{a,kir?) for a particle at radius r. The number of
precession periods, N,,, is L/Lp, where L is the wiggler
length. We have tabulated this quantity along with the
number of betatron wavelengths N and wiggle wave-
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lengths N, in table 1 for some past, present and future
FELs. (Note that ELF is included in the table even
though the focusing in ELF was by quadrupoles, The
table is meant to give a feel for the relative importance
of these effects for various classes of FEL). Although
the higher-power and higher-frequency FELs are longer
in physical length, their increase in v also greatly in-
creases their precession length, implying that these
anharmonic effects hecome more negligible at higher
power. IMP and Paladin have N, = 0.08-0.10, and in
an ELF-like FEL nearly one third of a precession
period will have occurred for an electron at the outer
radius of the beam. This result implies that the precise
location of the particles in these FELS will bear little
resemblance to the positions predicted by inclusion of
the harmonic focusing terms only. However, the effect
on the macroscopic beam quantities is less clear.

7. Estimate of the emiftance growth from nonlinear
focusing

In order to examine the effect on beam quanlities,
we integrated eq. (21) using an ensemble of particles,
loaded such that the density in x, y, x’, ¥’ phase space
was uniform, using the transverse loading algorithm
used in the FEL computer code FRED [2]. Using the
beam parameters labeled “example” in table 1, and
starting with 2 beam radius that was initially perfectly
matched to the velocity spread, although intentionally
off-axis, we computed the evolution of the beam as a
function of z. We computed the beam radius R, beam-
centroid position X, ¥, and the emittance E which we
define such that in the absence of anharmonie terms the
linear focusing would result in constant emittance:

E,=((8X2)(AX"2) - (AX 8x"Y) 7,

E, = ((A¥2)(AY™y — (AT A¥' )",
E=(E2+E})", (29)
where

AX=X-X., AY=Y,~Y

ft]
AX’E)";—X‘:, AY'=Y,~’—)':_.’,
X=(X), Te=(1),

X =(X), Y =(¥).

Here N is the number of simulation particles, i indi-
cates the ith particle and { ) =(1/N)Z¥,.

Figs. 3, 4 and 5 illustrate the evolution of the centroid,
radius and emittance, respectively, of a beam in which
the original coordinates of the centroid are the same:as
the initial coordinates of the particle in figs. 1 and 2.
Initially the evolution of the centroid follows the coor-
dinates of the particle. However, since each particle in

0.4 T T | 1T L M I | [N
0.2} —
o |iu :
o |
v
N
A
S |
-o.2- —
{ Illllll‘llllll,l
4] 500 1000 1500

Z
Fig. 3. The X- and Y-positions of the beam centroid as a
funetion of Z. The initial coordinates for the beam centroid are
the same as for the individual particle in [gs. 1 and 2. The
initinl radius of the beam is 0.08. At first the centroid under-
goes betatron motion, with the centroid X- and Y-amplitudes
interchanging as in figs. 1 and 2. As phase mixing occurs,
however, the centroids tend to zero.

the beam has a slightly different period of betatron
motion due to the nonlinear focusing terms, the beam
as a4 whole loses its coherent betatron motion. The

0.4

illl‘llllllltilil

o
t
I

R, < AXT W o AV 512
o
faS |
[

T=I=T

. G'c\b: l_ | . If’cllul 11 Iiolod .I - 1 I15'0c; L1 -

Fig. 4. The beam radius ind width in thé' X- snd Y-directions.

As the centroid positions tend to %ero,” the beam broadens,
while undergoing betatron oscillations. - -

I1L. THEORY
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Fig. 5. As phase mixing occurs, the beam initially offset with
low emittance is converted to a broader, hotter beam (higher
emittance) with no displacement.

centroid of the beam tends to zero as the radius of the
beam expands. In this example the beam was initially
matched in the sense that it was not undergoing radial
oscillations, but displaced from the magnetic axis. The
final state is one in which the beam is both matched in
radius and is not osciilating about the axis. Both the
emittance and radius of the beam have increased as a
resuit.

We may estimate the emittance growth rate from the
nonlinear terms based on the preceding discussion. En-
ergy conservation implies

2 AX:2>
=y x2eqaxty+ Do 4 BXT) 3
HD 3 Xc+< X) Kl.;! KE
r2 12
AY'?)
+ Y24 (AYDY + S5 +<—, . 30
SRR AR (30)

H, is an approximate constant of the motion (the
higher-order terms have been neglected in this expres-
sion). Here K = Wi /2. For a rotationless beam
2y 172
E=((AXY(AX") + (AY2y(AY ")) ",
There are two major effects of the nonlinearity:
(1) the betatron frequency becomes amplitude-depen-
dent so that phase mixing results, and
(2) the X and Y amplitudes are coupled and thus
energy is exchanged.

Phase mixing and virialization results in a final state
such that

X.=Y.=0,

(AXl) = Ml = (Ay?-> =

(AY"y
K; )

K§

Thus Eﬁnnl = ﬁKB<AX1>ﬁnal and (AXl>ﬁnnl =HU/27
so that

1
Efinal = fKuHu- (31)

The emittance grows due to the phase mixing. The
(dimensionless) growth length L, is defined by

AKRL =m. (32}
Here AKy is the difference in betatron frequencies

between the outermost particle and a central particle.
Thus the rate of emittance growth is roughly given by

=N
251

AK,
T{EﬁnnluE{))r Z<Lgr
0, Z>L,.

Az = (33)
{For Z > L, the emittance approaches the asymptotic
value given by eq. (31). Of course other effects such as
space-charge or wiggler errors which have been ne-
glected may lead to continued emittance growth).

Finaily, to determine the effect on FEL perfor-
mance, we incorporated egs. (14), (15) and (19) into the
FEL code FRED and compared runs with and without
the anharmonic terms for parameters used to simulate
IMP. Note that the assumption of constant a,, and v is
relaxed when the integration in FRED is carried out.
The final power was insensitive to the presence or
absence of the terms. The simulations showed only a 1%
final power difference.

8. Summary and cenclusions

We have reanalyzed the transverse equations of mo-
tion for an electron transiting a wiggler, including terms
of higher order in the small quantities &, x, &,y and
Via,/y that had not previously been included. We
find that the equations for the puiding-center particle
coordinates x and y can be expressed as a pair of
weakly coupled harmonic oscillator equations [eq. (14)].

The resulting motion is approximately harmonic be-

tatron motion but with amplitudes and phases that
precess on a relatively long length scale. The precessing
phase implies an effective correction to the betatron
wave number. The length scale increases linearly with y
and with the inverse square of the beam radius, both
factors indicating that the effects of the included
higher-order terms will diminish for high-power, high-
frequency FELs. When ensembles of particles are ex-
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amined, the nonlinear terms cause the emitiance to
grow. This is due to the phase mixing caused by the
amplitude-dependent betatron frequency. A beam with
an initial offset of the beam centroid is thus converted
into a beam with a larger radius and higher emittance.
Simulations with the FEL code FRED indicate that the
fractional change in final power produced is small when
the initial beam mismatch is small, however.
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